Soal:
Jika 1 + (1/4) + (1/9) + (1/16)
+ (1/25) + ..... = a, maka (1/9) + (1/25) + (1/49) + ..... = .....
Pembahasan:
1 + (1/4) + (1/9) + (1/16) + (1/25) + (1/36) + (1/49) + ..... = a
1 + (1/4) + (1/9) + (1/16) + (1/25) + (1/36) + (1/49) + ..... = a
Kemudian:
==> (1/4)
+ (1/9) + (1/16) + (1/25) + (1/36) + (1/49) +..... = a – 1
==> (1/9) + (1/25) + (1/49) +..... = a – 1– [(1/4) +
(1/16) + (1/36)+ .....]
==> (1/9) + (1/25) + (1/49) +..... = a – 1– (1/4)[(1)
+ (1/4) + (1/9)+ .....]
==> (1/9) + (1/25) + (1/49) +..... = a – 1– (1/4)(a)
==> (1/9) + (1/25) + (1/49) +..... = (3/4)a – 1
Jadi, (1/9) + (1/25) + (1/49) +..... = (3/4)a – 1
-----------------
terimaksih sudah menolong saya.... saya ijin download soal olimpiadenya
BalasHapus